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A B S T R A C T

The use of network analysis as a tool has increased exponentially as more clinical researchers see the benefits of 
network data for modeling of infectious disease transmission or translational activities in a variety of areas, 
including patient-caregiving teams, provider networks, patient-support networks, and adoption of health be
haviors or treatments, to name a few. Yet, relational data such as network data carry a higher risk of deductive 
disclosure. Cases of reidentification have occurred and this is expected to become more common as computa
tional ability increases. Recent data sharing policies aim to promote reproducibility, support replicability, and 
protect federal investment in the effort to collect these research data by making them available for secondary 
analyses. However, typical practices to protect individual-level clinical research data may not be sufficiently 
protective of participant privacy in the case of network data, nor in some cases do they permit secondary data 
analysis. When sharing data, researchers must balance security, accessibility, reproducibility, and adaptability 
(suitability for secondary analyses). Here, we provide background about applying network analysis to health and 
clinical research, describe the pros and cons of applying typical practices for sharing clinical data to network 
data, and provide recommendations for sharing network data.

Introduction

Over the last 40 + years, network analysis has established itself as a 
prominent data-intensive area of research. [1–3] Federal research in
vestment in the field has grown dramatically: in 2022, the National 
Science Foundation (NSF) invested nearly 26 million dollars in 74 pro
jects covering social, mathematical, statistical and related programs 
using network analysis. During this same period, the National Institutes 
of Health (NIH) invested over 93 million dollars in 209 projects (Fig. 1). 
Similar investment trends can be seen at the Centers for Disease Control 
and Prevention (CDC) and US Department of Defense (DoD) [for security 
in particular, see the Future Directions of Network Science report [4]].

Network analysis studies the relations between entities, often people, 

organizations, or political entities, and how those relations affect be
haviors and outcomes. [5] Relationships between people in a network 
often include but are not limited to social, sexual, familial, or economic 
ties. [6,7] For example, a common network study would proceed from 
data that asked students in schools to name their closest friends. [8–11]
Network analysis has produced novel and significant insights in fields 
such as health sciences, [5,12–16] social and economic modeling, [17]
environmental modeling, [18,19] security studies, [20,21] and educa
tion [22] among others. For example, patient networks influence disease 
contagion, [23] physician networks impact care quality and prescribing 
behavior, [24–27] and community healthcare networks shape care de
livery, [28] which in turn impact health disparities, [29] health ana
lytics, and precision medicine. Social networks shape markets (both 
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hiring and performance) [30] and propel innovation (ideas and in
vestments) [31] as well as its diffusion. [32–35] Education and inno
vation hinge on cross-linked social networks of scientists, [36] teacher 
networks support school performance, [37] and student networks affect 
each other’s academic performance. [38–41] Network methods have 
also been central to major agenda-setting government reports, such as 
the U.S. Surgeon General’s 2023 advisory on the healing effects of social 
connection. [42]

Effective January 25, 2023, NIH’s new Data Management and 
Sharing (DMS) policy emphasizes data sharing and requires a DMS plan 
for all submissions for funding, [43] as part of NIH’s increased focus on 
rigor and reproducibility. The DMS plan describes the scientific data 
generated from NIH funding, its management, and a plan for sharing the 
data with other researchers. As of December 2024, none of the sample 
DMS plans on NIH’s DMS page pertain to network data. [44]

Yet, network data present uniquely problematic cases for sharing. By 
definition, network data is relational, with a correspondingly distinctive 
format consisting of an individual-level dataset describing each study 
member’s relevant characteristics and measures along with a relational 
dataset describing the connections between study population members. 
Egocentric networks describe relationships between a focal respondent 
(called the ego) and their named contacts (called alters), alter and rela
tionship characteristics, and alter-alter relations, [45] representing the 
linkages within the ego’s immediate personal network (e.g., caregiving, 
social support, or needle-sharing networks, etc.). Sociocentric networks 
describe the relationships between all actors (called nodes) in a given 
context of interest (classroom, hospital, city, sexual network, etc.). In 
both types of network data, characteristics of the actors and their 

connections are typically collected, in addition to information 
describing the nature of the relationships. [46,47]

Consequently, there is a high risk for deductive disclosure of confi
dential information with network data, as the relational information 
makes it easier to reidentify participants. [47,48] Deductive disclosure 
occurs whenever one can reidentify unique individuals based on attri
butes, [49] even if explicit identifiers are removed. In the case of 
network data, a banal set of attributes which may not be sufficient to 
identify any single individual become more distinguishing once the re
lations between individuals are known, such as household members, 
romantic partners, or co-workers, and this risk increases with each 
additional person and their relationship linked into the egocentric or 
sociocentric network. Re-identification of people in network datasets 
has been shown to be possible, [48] potentially revealing private attri
butes such as income, sexual identity, or drug use. Sociocentric network 
studies pose deductive disclosure risk because the analytic sample is a 
census of the relevant context, meaning that anyone with some knowl
edge of setting actors can use that knowledge to identify study members 
and then learn any confidential information included in the survey. 
Ego-network data has the advantage of sampling from populations 
(leading to inclusion ambiguity), but often includes clusters of close 
contacts with identifying attributes since each respondent provides 
detailed information about their alters and their connections. These 
uniquely elevated risks require enhanced data security when sharing 
network data.

The risk of deductive disclosure for relational data is compounded by 
another feature of network data – that subjects provide both their own 
data and data about the relationships (edges) elicited from them, often 
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Fig. 1. illustrates grant funders ongoing interest and investment in projects that include network data and analysis.
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supplying information about people who may not have consented to 
their participation in the study, including various types of potentially 
identifying information such as names or initials. This proxy reporting 
process is a necessary feature of sociocentric and longitudinal egocentric 
data collection, where it is essential to be able to link or match in
dividuals across participants or across time. As such, the typical 
individual-oriented consent procedures for collecting, storing, and 
sharing data must evolve to meet these unique cases.

As issues with re-identification of network members have largely 
occurred in computational and social science spaces, clinical scientists 
have yet to thoroughly grapple with it. However, this is now a pressing 
issue in light of NIH’s new data sharing policy, as more clinical re
searchers see the benefits of network data for translational activities in a 
variety of areas.

As a community of researchers, we have to balance potentially 
competing ethical duties. On one hand, it is imperative to protect the 
privacy of our research participants, who provide intimate information 
about private health, economic, and social behaviors. On the other hand, 
we have an obligation to scientific integrity and inquiry that is best 
served by open and transparent analytic practice. [50,51] This generally 
requires making data available to other researchers for independent 
inspection. As we describe in the next section, many traditional practices 
for protecting privacy while openly sharing research data cannot be 
directly applied to network data without compromising its utility or 
increasing the risk of privacy violations.

To address these challenges, we review common data sharing prac
tices and their applicability when sharing network data and suggest that 
the best strategy for ethically sharing sensitive network data requires a 
multi-level access approach that leverages the utility-privacy tradeoff 
inherent in identifiability. At one extreme, we provide guidelines for 
minimal data sharing that allows simple analyses but hides much of the 
attribute data that poses re-identification risk. At the other extreme, full 
data can be shared, enhancing replicability and secondary data analysis 
but increasing risk of privacy loss for participants and the individuals 
about whom proxy data were provided. Several proposed techniques 
aim to balance privacy and data utility, though determining a standard 
practice is complicated by variation across networks. [52–55] Ideally, 
these techniques should balance security (protection of privacy), acces
sibility (openness to the other researchers), reproducibility (sharing to 
ensure good practices), and adaptability (a protection of the investment 
made to collect the data in such a way that secondary analyses can be 
conducted). However, balancing these four features can be complicated 
in practice.

Applicability of data sharing practices to network data

The aforementioned NIH policy targets analytical replicability, yet 
the resulting practices also facilitate sharing data to address questions 
beyond their original purpose. Common practices to ensure safe clinical 
data sharing practices come with different implications when sharing 
network data. [56] The clinical data sharing practices we cover include 
aggregate reporting, partial reporting, reducing data sensitivity, per
turbing the data or adding noise, or sharing via a repository. We describe 
these practices, provide examples, discuss the advantages and disad
vantages of applying these strategies to network data, and provide 
actionable recommendations to balance security, accessibility, reproduc
ibility, and adaptability (SARA) when sharing network data.

Aggregated data

As with other data types, reporting aggregate network data – or 
summarized statistics about the network as a whole derived from in
formation about relationships, or the individual nodes or alters – pro
vides the highest level of security and accessibility. For networks, 
aggregated statistics often appear in research publications and provide 
an idea of the network’s structure (such as the number of nodes and 

edges, density, connectivity, composition, centralization, or the modu
larity of communities / groups). [45,57] These statistics may also 
summarize node-level attributes across the network, such as the pro
portion of nodes with specific characteristics or differences in network 
statistics by group characteristics of interest (e.g., gender, race). [58,59]
Aggregated statistics are commonly used in standard regression models 
or in building network-based simulations.

While commonly used, aggregated network statistics share disad
vantages with other types of aggregate reporting. Analyses are not 
reproducible, and the richness of the data is lost, reducing potential for 
adaptability. [60] This is particularly important in sociocentric datasets 
that consist of a single network, where analyses of individual nodes are 
often required to understand how the behavior or outcomes of those 
nodes are influenced by the broader network structure and a person’s 
position in it. [5] Such analyses are typically not possible using aggre
gated sociocentric network data. Thus, using aggregated sociocentric 
data for novel research questions generally requires simulation of net
works tuned to the set of network statistics provided. [61–64] Moreover, 
given the probabilistic nature of simulations, full replication of pub
lished research findings using node-level data may not be possible.

In contrast, egocentric network analysis allows researchers to access 
hundreds or thousands of independent networks. [45] Thus, aggregated 
network statistics are more commonly used to simplify statistical 
modeling because much of the useful information about the networks, 
especially network structure, is contained in the aggregate. Nonetheless, 
certain kinds of egocentric analyses, such as multilevel modeling of the 
behavior of alters within ego networks, are not feasible with aggregated 
data. In some cases, broader “global” structures in which the egocentric 
networks exist can be simulated from the available information. [65,66]

Partial reporting

Partial reporting, or depositing a dataset with some individuals 
omitted, is another technique often used to reduce the risk of identifying 
participants and provide a structure to promote accessibility. Partial 
reporting is one of the recommendations for sharing genetic or pathogen 
genomic sequences [67] [a 2014 Genomic Data Sharing Policy requires 
sharing of human and non-human genomic data generated from NIH 
funding via the appropriate genomic data repository [68]]. The goal of 
partial reporting is to reduce the risk of deductive disclosure by leaving 
some of the potentially linked sample members out of the dataset. 
However, the suitability of this practice for network data is unclear 
because it may still be possible to identify egos and alters based on the 
combination of attributes among reported nodes in both egocentric and 
sociocentric networks. This is compounded for persons with rare nodal, 
relational, or dyad-level attributes.

While this strategy promotes high accessibility, it hinders the repro
ducibility and adaptability of network datasets where the strength is in 
identifying and measuring relationships between people. There is an 
inverse relationship between security and adaptability/reproducibility 
dependent on the amount of data reported; for network data in which 
the richness lies in the combination of attributes and relations, holding 
back enough data to enhance security may reduce adaptability or repro
ducibility. Reproducibility is particularly affected if overall network sta
tistics or positions are skewed.

Partial reporting of network data can change the broader structure of 
sociocentric networks depending on which nodes or edges are kept out 
of the reported dataset (Figure 2). Removing nodes or edges which affect 
the degree distribution or motif distribution (dyad/triad census) affects 
reproducibility in sociocentric networks. [69–71] Furthermore, the pos
sibility for partial reporting could selectively remove relational infor
mation, rather than “sampling” for deletion from the individuals; this 
difference in (multiple) units of analysis is one of the unique consider
ations to appropriately sharing network data.

In egocentric networks, removing alters can change the structural (e. 
g., network size or density) or compositional (e.g., proportion women, 
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mean tie strength) properties of networks, though this problem is 
minimized if the research adheres to proper procedures regarding 
randomization and number of alters dropped. [72] Adaptability is 
impeded if the relationships between nodes or if the broad network 
structure is altered. Additionally, partial reporting may not fully pro
mote security. The risk of deductive disclosure is not minimized in the 
case of ego networks retained in the reported dataset if few of the alters 
are probabilistically selected to be left out of the shared data. Leaving 
out a sample of complete egocentric networks also does not protect the 
privacy of the remaining reported egocentric networks since egos are 
typically sampled from a population and thus independent.

Reducing data sensitivity

Reducing data sensitivity involves adjusting coding schemas, such as 
removing dates or changing continuous variables like age to categorical 
ones. There are similar ways that data can be categorized or generalized 
in ways to reduce sensitivity that operates at the relational level (e.g., 
illicit affairs) without acting on individual-level data sensitivity. The 
goal is to create a dataset with limited sensitivity that can still be used 
for statistical analyses. Accessibility remains unaffected so long as data 
are made publicly available or shared by the initial principal investi
gator or primary data collector (hereafter “primary user” as this is the 
person likely to be responsible for decisions about data sharing). 
Depending on the analysis, this strategy may still enable reproducibility 
— but often only for questions that have already been addressed or that 
require levels of measurement anticipated by the primary user. Adapt
ability is then inhibited, especially if new analytic questions rely on 
continuous comparison between subjects or finely detailed measure
ments. This strategy may also obscure some of the salient features 
driving connections, for instance age differences between sexual part
ners in a network [73,74] or designating relations as kin vs. non-kin in 
an egocentric network. [75] From a security standpoint, identification of 
network members may still be possible with rare outcomes since the 
addition of relations between people adds a new dimension through 
which to identify cohort members. Reducing data sensitivity may 
minimize the precision of measurements linked to specific individuals, 
but providing a coded or limited dataset can still put network members 
at risk of re-identification, especially when there are rare nodal, rela
tional, or dyad-level attributes which can still lead to re-identification (e. 

g., relations across age bands).

Data perturbation

Data perturbation consists of adding “noise” to measurements in a 
dataset to reduce the risk of deductive disclosure. For network data, 
noise is added by changing a percentage of edges (relationships) [76] – 
for instance, moving a certain percentage of edges from one pair of 
nodes to another or within a partition [77] in ways that preserve esti
mates of network structure, thereby curtailing network re-identification 
and promoting security. As with reducing data sensitivity, accessibility 
depends on the willingness of primary users to make data publicly 
available.

In other fields which use relational data, such as geospatial analysis, 
introducing noise has been shown to be protective while adding little 
bias. [78] However, this approach may have negative consequences for 
network data depending on the extent of perturbation. Data perturba
tion can induce significant bias in network data specifically, although 
methods to improve network estimates after adding noise have been 
developed [79] and differential privacy approaches to balance privacy 
and utility can be applied at local or centralized levels. [52] Relatedly, it 
can negatively affect reproducibility if path structures, motif distribu
tions, or degree distributions change. This is evident with sociocentric 
data depending on the goal of analysis: changes to path structures can 
affect diffusion, especially at the levels needed to protect privacy, and 
changes to the motif or degree distribution can affect network descrip
tion. [80] Perturbing egocentric data – particularly dropping/adding 
edges between alters or perturbing alter attributes – can also affect 
reproducibility, especially when modeling the network. Adaptability may 
still be high in both cases depending on the magnitudes and types of 
changes and whether overall network structure is impacted.

An alternative approach to preserve reproducibility and promote 
adaptability, permuting node attributes, can reduce this bias, though it 
risks hiding these attributes’ relationships to tie formation and other 
outcomes of interest. Moreover, data perturbation may still permit 
identification of nodes with rare attributes or relationships, or in a 
network with high population depending on the data access level. A 
perturbation method that increases security and supports accessibility and 
adaptability includes permuting some critical node-level attributes and 
applying an exponential random graph model to the permuted data to 
create a faux network based on the empirical data. [81,82] However, 
this method only reproduces past analyses insofar as the network 
generated resembles its empirical counterpart.

Data sharing via data repositories

Specialized data repositories are adapted to distinct formats and 
sensitivity risks. Examples include the genomic data repositories (Gene 
Expression Omnibus (GEO), [83] Sequence Read Archive (SRA), [84]
GenBank, [85] Los Alamos National Laboratory (LANL), [86] etc.) listed 
in the 2014 NIH Genomic Data Sharing Policy as well as a set of 
generalist or domain-specific NIH-supported scientific data repositories 
adhering to the FAIR (Findable, Accessible, Interoperable, and Reus
able) principles. [87] However, many of these repositories maximize 
accessibility by significantly limiting personal identifiers and, conse
quently, limit adaptability for secondary research. Existing repositories 
for network data include the Stanford Large Network Dataset Collection 
(SNAP), [88] Network Data Repository, [89] Colorado Index of Complex 
Networks (ICON), [90] and IEEE DataPort. [91] These repositories 
typically list important measures associated with each dataset to help 
users determine which one is appropriate for their needs. However, most 
network data sets in these repositories have limited personal 
information.

Some domain-specific repositories follow set processes to share fuller 
network data, opting to maximize reproducibility and adaptability. 
Commonly, prior to data deposit, the primary user can set criteria for 

Fig. 2. Potential loss of relational information in partially reported data. Panel 
a) represents a network with full reporting of nodes and edges. Panels b), c), 
and d) illustrate the same network with two nodes randomly omitted in partial 
reporting. One sees that the removal of select nodes can lead to different 
measures and interpretations of the same network, with negative consequences 
for reproducibility.
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who can request the data and how they can be used, as with the Inter- 
university Consortium for Political and Social Research (ICPSR). [92]
Institutional review board (IRB) approval is communicated to the re
pository owner and if the data requestors meet the requirements of the 
primary users then the data will be shared. Limitations of sharing full 
network data via a repository echo those for other types of data: it relies 
on the data requestor to protect the highly sensitive data shared. Full 
data sharing of many network data sets carries a significant security risk, 
and when repositories do prioritize security, accessibility becomes a 
function of whether there are processes in place to facilitate secure 
sharing.

Several network studies, including Add Health, share data in this 
manner through restricted-use contractual data sharing. [93] Such 
processes typically exist as formal agreements between the primary user 
and requestor, facilitated by the data requestor’s IRB to approve sec
ondary analyses of the data, provided that a data requestor fits criteria 
set by the primary user. IRB approval is communicated to the primary 
user before the dataset is shared with the requestor. This process puts the 
onus of security on the stringency of the IRB and leverages trust in ethical 
practices to share and protect data for analysis. Data use agreements 
(DUAs) are generated and stored by the primary user. This process is 
frequently manual rather than automated and thus inefficient and 
difficult to scale, which can be burdensome and inadvertently limit 
accessibility.

Other limitations of online repositories have implications for acces
sibility and security even when users follow best practices. Online data 
repositories are frequently hosted within a specific institution; if the 
institution changes investments in a way that threatens the continuity of 
the repository then accessibility is affected while the primary users re- 
submit data to an alternative repository. Another limitation emerges 
from the potential for credential counterfeiting or user credential 
phishing; these potential security concerns are distinctive to online set
tings and should be appropriately considered.

Despite these limitations, full datasets hosted in repositories may be 
the best solution for network data. Many older datasets now exist elec
tronically, can be shared easily with no restriction on number of copies, 
and could exist in perpetuity. Accordingly, online repositories may be 
the most effective path to sharing secure and versatile network data 
provided security can be assured. Furthermore, as computing power in
creases, and as relational social media data becomes more ubiquitous, 
re-identification of individuals in these data may be possible via 
methods that did not exist when the data were collected, forcing a duty 
to consider the future ramifications of present data sharing. Thought
fulness and care are needed regarding collecting, storing, and sharing 

these data regardless of their ability to foster reproducibility and adapt
ability. Such repositories could achieve this by following the practices of 
repositories for other types of data, [94,95] including stringent DUAs, 
relying on the ethical practices to which we as a community of re
searchers are bound. DUAs in this vein include restrictions on use to 
what is specified in the agreement and by whom, restrictions on sharing, 
a time-limited period of data use, instructions for both storage and 
destruction of data upon close of the agreed-upon analyses, and a 
requirement of IRB oversight. Ideally, electronic repositories will utilize 
an automated DUA with an honest data broker to ease the burden and 
facilitate accessibility.

Effects of data sharing practices by network type
Egocentric and sociocentric network data have distinct structure and 

analysis goals, leading to different considerations for sharing practices. 
Each practice varies in its ability to ensure the security, accessibility, 
reproducibility, and adaptability by network type. Figure 3 provides an 
overview of how these practices promote each of these qualities.

Considerations and recommendations specific to egocentric data. As the 
most accessible option, aggregated data at the ego network level can be 
provided with minimal risk to security. This includes summary statistics 
for the structural and compositional characteristics of each ego network. 
However, a DUA is recommended for sharing alter-level data to ensure 
that these more sensitive data, which carry a possibility of deductive 
disclosure for a person who has not consented, are not identifiable. 
Strategies to protect alters’ confidentiality should always include 
removing any alter names, including first names or initials, and using 
only numeric identifiers to link alters across waves of data. Moreover, 
security can be further enhanced by either providing only aggregated 
information at the network level for alter demographics or reducing 
sensitivity by broadly categorizing or dichotomizing information (e.g., 
relationship as kin/non-kin, education as college/non-college). Excep
tions to these alter-level data sharing guidelines arise when including 
egocentric network data collected in a small, knowable, or at-risk 
community could make individuals identifiable (e.g., drug use net
works in a rural community); [96] in such cases, alter-level character
istics should not be provided regardless of a DUA.

Considerations and recommendations specific to sociocentric data. As with 
egocentric data, we recommend that sociocentric aggregated data and 
network statistics be made publicly available. [97] Restrictions are not 
needed unless the aggregated statistics are combined in such a way that 
a small or rare group could be identified. [98] Beyond DUA standards, 

Fig. 3. Clinical data sharing practices and their efficacy in promoting security, accessibility, reproducibility, and adaptability for network data.
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one must consider both the identification issues alongside the potential 
uses of shared data. While individual-level protections are important, 
given the “complete” population nature of sociocentric network studies, 
the implications of these considerations must be addressed at both the 
collective and individual level. To this end, sociocentric network data 
sharing must address protections for the metadata about the study 
context, protections of nodal attribute and relational information, as 
well as appropriate uses at the analytic level. With the exception of in
dividual attribute data (which in the case of sociocentric data is typically 
self-provided), each of these require network-specific considerations 
beyond the “standard” operating procedures.

Conclusion

Network data have unique features that do not adhere to typical 
conceptualizations of data privacy associated with traditional (non- 
relational) data, resulting in a significantly higher risk of deductive 
disclosure. Best practices at a minimum should include protocols to 
protect privacy (security), clear guidelines for data depositors and re
questors (accessibility, reproducibility), an automated process to ease 
sharing (also accessibility), and provision of the data for robust secondary 
analyses (adaptability). Maximizing reproducibility and adaptability pro
tects investments and promotes open science. [99] Balancing all four 
principles requires a clear pipeline for data depositors to share their data 
in the fullest form possible depending on sensitivity. As with other types 
of clinical or public health data, a data repository can have different 
protocols to deposit and share network data based on sensitivity. 
Sharing network data is crucial for transparency in science and maxi
mizing federal research investments. To achieve these goals, sharing 
data in its full form while protecting security and sensitive information is 
essential. To that end, a centralized data repository designed specifically 
for network data would provide a focal point for searching and sharing 
network data, protecting the investment made to collect the data.
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